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Critical behavior of the mixed-spin Ising model with two competing dynamics
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In this work we investigate the stationary states of a nonequilibrium mixed-spin Ising model on a square
lattice. The model system consists of two interpenetrating sublattices of spinss51/2 andS51, and we take
only nearest neighbor interactions between pairs of spins. The system is in contact with a heat bath at
temperatureT and subject to an external flux of energy. The contact with the heat bath is simulated by single
spin flips according to the Metropolis rule, while the input of energy is mimicked by the simultaneous flipping
of pairs of neighboring spins. We performed Monte Carlo simulations on this model in order to find its phase
diagram in the plane of temperatureT versus the competition parameter between one- and two-spin flips,p.
The phase diagram of the model exhibits two ordered phases with sublattice magnetizationsm1 , m2.0 and
m1.0, m2,0. These phases are separated from the paramagnetic phase (m15m250) by continuous transi-
tion lines. We found the static critical exponents along these lines and showed that this nonequilibrium model
belongs to the universality class of the two-dimensional equilibrium Ising model.
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I. INTRODUCTION

Kinetic Ising models on a lattice have been employed
describe the stationary nonequilibrium states of a great v
ety of problems@1,2#. Aside from the exact solution found b
Glauber for the kinetic Ising model in one dimension@3#, the
majority of studies in this field employ computer simulatio
methods. The reason for this is the absence of a comp
theory concerning nonequilibrium phenomena such as
have for the case of problems considered in equilibrium
tistical mechanics.

In this work we consider a particularly simple model of
nonequilibrium system. The model is an Ising system w
spin- 1

2 and spin-1 variables on different sublattices of t
square lattice. The time evolution of the states of the sys
is governed by two competing dynamical processes:
simulating the contact of the system with a heat bath a
temperatureT, and the other mimicking an input of energ
into the system. The contact with the heat bath is simula
by the Glauber@3# stochastic process, where both thes and
Sspins relax through one-spin flips, with probabilityp, while
the input of energy is modeled by flipping a pair of near
neighbor spins simultaneously, with probability (12p).
Only two-spin flips that increase the energy of the system
permitted in this model. Therefore, the flux of energy into t
system favors states of higher energy, causing a compet
with the one-spin flip Glauber process. This model has
ready been studied in the pair approximation@4# and the
phase diagram in theT-p plane determined. We found tw
continuous transition lines: one line separating an orde
phase where the sublattice magnetizations are aligned p
lel from a disordered phase where the sublattice magne
tions are both zero~paramagnetic phase!, and another line
separating the paramagnetic phase from an ordered p
where the sublattice magnetizations are aligned in oppo
directions. In the pair approximation nearly half of the ar
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of the phase diagram is occupied by the paramagnetic ph
the other half being occupied by the ordered phase with m
netizations in opposite directions. The ordered phase w
both magnetizations positive occupies a very small region
the phase diagram.

Each of the dynamical processes we consider satisfies
detailed balance condition, which drives the system tow
equilibrium. However, when both act simultaneously, d
tailed balance is no longer satisfied and the system is for
out of equilibrium. In the present model the two dynamics
not conserve the order parameter. The two-spin flip we c
sider here is different from the usual Kawasaki kinetics@5#
because the two sublattices are not equivalent. Tome´ and de
Oliveira @6# considered an Ising ferromagnetic system evo
ing in time according to two competing dynamical process
the one-spin flip Glauber dynamics, and the two-spin
change Kawasaki dynamics. They found three different ty
of magnetic ordering as the competition parameter betw
these two stochastic processes changes. Ferromagnetic,
magnetic, and antiferromagnetic phases appear in their p
diagram. Our mixed-spin Ising system also presents th
different phases, and this is related to the fact that the t
spin flips in both models increase the energy of the syst
However, in their work the two-spin exchange Kawasaki d
namics conserves the order parameter, while in our case
does not happen because the two sublattices are not eq
lent.

The phase diagram and the critical properties of Ising s
tems with competing Glauber and Kawasaki dynamics h
been extensively studied in recent years and a review ca
found in Ref.@7#. In this work we used Monte Carlo simu
lations and finite-size scaling arguments@8# to determine the
phase transitions and the static critical exponents of
model. We attributed a weightp to the one-spin flip process
and a weight (12p) to the two-spin flip process. We dete
mined the phase diagram of the model in the plane of te
peratureT versus competition parameterp, and we also no-
ticed the presence of three different phases. Forp.1 ~small
flux of energy! we obtained an ordered phase where the s
©2002 The American Physical Society11-1
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lattice magnetizations are both positive. On increasing
flux of energy, the ordered phase becomes unstable a
disordered phase~paramagnetic phase! appears. However
for a large value of the flux of energy (p.0), we observe
the presence of another ordered phase, whose symme
different from that found at large values ofp. We determined
the critical exponentsn, b, andg along the continuous tran
sition lines, and we showed that the mixed-spin model is
the same universality class as the equilibrium Ising mod

The rest of this paper is organized as follows. Section
describes the mixed-spin Ising model and the two compe
dynamical processes. In Sec. III, we give some details c
cerning the Monte Carlo simulations and define the obse
ables of interest. In Sec. IV we present the results of
simulations, the phase diagram, and the static critical ex
nents of the model. Finally, in Sec. V, we present our c
clusions.

II. THE MIXED-SPIN ISING MODEL

We consider a mixed-spin Ising model defined in a squ
lattice of linear sizeL, with spins s51/2 and S51.
The lattice is bipartite, with thes spins occupying the site
of one sublattice, while theS spins occupy the sites o
the other sublattice, each sublattice containingN sites.
A state of the system is represented by$s,S%
[$s1 ,...,s l ,...,sN ;S1 ,...,Sm ,...,SN%, where the spin vari-
abless l can assume the values61 and the spin variablesS
can assume the values 0,61. The energy of the system in th
state (s,S) is given by

E~s,S!52J(
~ i , j !

Sis j , ~1!

where the sum is over all nearest neighboring pairs of sp
andJ is taken to be positive. Let us denote byp(s,S;t) the
probability of finding the system in the state (s,S) at timet.
The equation of motion for the probability of the states of t
system is given by the gain-loss master equation

d

dt
p~s,S;t !52(

s,S
W~s,S→s8,S8!p~s,S;t !

1(
s,S

W~s8,S8→s,S!p~s8,S8;t !, ~2!

whereW(s,S→s8,S8) is the probability, per unit of time
for the transition from the state (s,S) to the state (s8,S8). In
this model, we assume that the transition rateW(s,S
→s8,S8) is given by the competition between two indepe
dent stochastic processes: the one-spin flip Glauber proc
intended to describe the relaxation of thes andS spins due
to the contact with the heat bath at temperatureT, which can
be written in the form

WG~s,S→s8,S8!5WG~s,S→s8,S!1WG~s,S→s,S8!,
~3!

and the two-spin flip process, chosen independent of t
perature, and designed to increase the energy of the sys
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which can be written asWGD(s,S→s8,S8). Then, we have
the following equation for the total transition probability:

W~s,S→s8,S8!5pWG~s,S→s8,S8!

1~12p!WGD~s,S→s8,S8!, ~4!

where 0<p<1 is the competition parameter between t
one-spin flip and two-spin flip processes. The one-spin
process is described by the Glauber dynamics, that is,

W~s,S→s8,S8!5(
j 51

N

ds1 ,s
28
ds2 ,s

28
¯ds j ,2s8 j¯dsN ,s

N8

3dS1 ,S
18
dS2 ,S

28
¯dSk ,S

k8
¯dSN ,S

N8
v j~s8!

1 (
k51

N

ds1 ,s
18
ds2 ,s

28
¯ds j ,s

28
¯dsN ,s

N8

3dS1 ,S
18
dS2 ,S

28
¯dSk ,S̃k

¯dSN ,S
N8
vk~S̃!, ~5!

wherev j (s) andvk(S) are the probabilities of flipping the
spins s j and Sk , respectively. We use the variableS̃k to
mean the two possible values that a change of the actual
variableSk can take. We adopt the Metropolis prescriptio
for the one-spin flip transitions, that is,

v j~s!5min@1,exp~2bDEj !#, ~6!

whereb51/kBT, and T is the absolute temperature of th
heat bath.DEj is the change in energy after flipping spins j
at sitej. We also assume a similar expression forvk(S). For
the two-spin flip we can write

WGD~s8,S8→s,S!5 (
j ,k51

N

ds1 ,s
18
ds2 ,s

28
¯ds j ,2s

j8
¯dsN ,s

N8

3dS1 ,S
18
dS2 ,S

28
¯dSk ,S̃k

¯dSN ,S
N8
v jk~s8,S̃!,

~7!

wherev jk(s,S) is the probability of a simultaneous flippin
of the neighboring spinss j andSk . This process favors an
increase in the energy of the system, and it is written as

v jk~s,S!5H 0 if DEjk<0

1 if DEjk.0,
~8!

whereDEi j is the change in energy after flipping the spinss j
andSk at the neighboring sitesj andk.

III. MONTE CARLO SIMULATIONS

We used the standard importance sampling techniqu
simulate the model introduced in the last section. We con
ered square lattices of linear sizeL, with values ofL ranging
from L516 to 128, and we applied periodic boundary co
ditions. We have taken completely random spin configu
tions as the initial states of our simulations. A new config
ration is generated from an old one by the following Mark
1-2
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CRITICAL BEHAVIOR OF THE MIXED-SPIN ISING . . . PHYSICAL REVIEW E65 026111
process: for a given temperatureT and a selected value of th
competition parameterp, we choose at random a spin of th
lattice, and then we generate a random numberj between
zero and unity. Ifj<p we choose to perform the one-sp
flip process, according to the Metropolis prescription giv
by Eq. ~6!. If j.p, then we consider the two-spin flip pro
cess. In this case, we randomly select a new spin that
nearest neighbor of the initial chosen spin, and we apply
prescription given by Eq.~8!. In general, we discarded th
first 53104 Monte Carlo Steps~MCS! in order to achieve
the stationary regime for all lattice sizes. In order to estim
the quantities of interest, we considered the next 43105

MCS to calculate the averages for any lattice size. One M
equalsL2 one-spin flip or two-spin flip trials.

We calculated the sublattice magnetizations per spin,m1
andm2 , defined as

m15
1

N K (
i

Si L ~9!

and

m25
1

N K (
j

s j L . ~10!

We also defined the total and the staggered magnetizat
respectively, by

mF5u~m11m2!u, ~11!

and

mAF5u~m12m2!u, ~12!

and their associated reduced fourth-order Binder cumul
@9#

UL~m!512
^m4&

3^m2&2 . ~13!

The corresponding susceptibilities are defined by

x~m!5N$^m2&2^umu&2%, ~14!

wherem can bemF or mAF.
These above defined quantities obey the following fin

size scaling relations in the neighborhood of the station
critical point pc :

mL~p!5L2b/nm0~L1/ne!, ~15!

xL~p!5Lg/nx0~L1/ne!, ~16!

UL~p!5U0~L1/ne!, ~17!

wheree5(p2pc)/pc , pc being the critical competition pa
rameter for each value ofT.

The derivative of Eq.~17! with respect to the competition
parameterp give us the following scaling relation:
02611
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UL8~p!5L1/n
U08~L1/ne!

pc
, ~18!

so that

UL8~pc!5L1/n
U08~0!

pc
. ~19!

We can determine the critical exponentn from a log-log plot
of UL8(pc) versusL.

IV. RESULTS

In Fig. 1 we show the phase diagram of the model in
T2p plane. It displays three different phases, separated
two continuous transition lines: one line separating an
dered phase (F), where the sublattice magnetizations a
both positive, from a disordered paramagnetic phase (P),
where both sublattice magnetizations are zero. The other
separates the paramagnetic phase from a different ord
phase~AF!, where the sublattice magnetizations are align
in opposite directions. As we can see, the paramagn
phase occupies almost all the region of the phase diagr
We also plotted in Fig. 1 the results obtained previously@4#
in the pair approximation. In this approximation the A
phase occupies an area of the phase diagram as large a
paramagnetic phase. On the other hand, theF phase occupies
a very small area of the phase diagram in both the pair
proximation and the Monte Carlo simulations. For the p
ticular casep51, where only one-spin flips are permitte
the stationary state coincides with the thermodynamic eq
librium state, because there is no flux of energy into
system. Forp51, the transition temperature between the
deredF phase and the paramagneticP phase isTc51.934
60.007. This value was found by considering the comm
point where the cumulants for different lattice sizes cross
we will show next. However, this point is not exactly th

FIG. 1. Phase diagram of the nonequilibrium mixed-spin Is
model in theT-p plane. The letters denote theF and AF ordered
phases and the paramagneticP phase. The full lines give the result
of simulations, while the dotted lines represent the pair approxim
tion calculation. The temperature is measured in units ofJ/kB andp
is a dimensionless parameter.
1-3
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FIG. 2. Finite-size behavior of the order parameters as a function of the competition parameterp for several lattice sizesL indicated in
the figures.~a! Total magnetizationmF for T51.5. ~b! Staggered magnetizationmAF for T52.0.
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same for each pair of lattice sizes in the simulations. T
uncertainty is related to the spread of the values of temp
ture around a mean value, after all the crossing points
considered. Our critical temperature is in good agreem
with the one found from series expansion calculations@10#,
Tc51.952. The temperature is measured in units ofJ/kB .

The order parameter of theF phase ismF, while the one
associated with the ordered AF phase ismAF. These param-
eters go continuously to zero at the borders of theF and AF
phases with theP phase. Figures 2~a! and 2~b! show the
behavior of the order parametersmF andmAF, respectively,
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as a function ofp for various lattice sizes, and at a fixe
temperature. Figure 2~a! indicates that the order paramet
mF is of order unity for p.pc and vanishes forp,pc ,
except for finite-size effects. The same behavior is also
served for the order parametermAF when we cross the tran
sition point @Fig. 2~b!#. We can also get some informatio
concerning the transition point by examining the behavior
the order parameters as a function of 1/L, as we can see in
Figs. 3~a! and 3~b!. For instance, in Fig. 3~a!, we plottedmF

against 1/L for some selected values ofp in the rangep
50.9800– 0.9830. From this figure we can say that the c
FIG. 3. Magnetization as a function of 1/L for several values of the competition parameterp as indicated in the figures.~a! Total
magnetizationmF for T51.5; the transition appears to be in the range 0.9810<p<0.9820.~b! Staggered magnetizationmAF for T52.0; the
transition is located in the range 0.06<p<0.07.
1-4
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FIG. 4. Fourth-order cumulant for various system sizes as indicated in the figures.~a! The critical competition parameter ispc

50.981260.0001 at the transition lineP-F for T51.5. ~b! At the transition line AF-P, for T52.0, we obtainedpc50.06560.001.
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cal value ofp is located in this range. The same behavior
also noted in Fig. 3~b!, where the order parametermAF is
plotted versus 1/L, for p in the range 0.050–0.070.

For a better determination of the critical parameters,
used the fourth-order cumulant intersection property@9#. The
scaling relation for the fourth-order cumulant shows that
the critical competition parameter, all curves must cross
common point. In order to find the critical parameter, w
fixed the temperature, which is measured in units ofJ/kB ,
and we plottedUL(p) versus the competition parameterp,
for various lattice sizesL, as shown in Figs. 4~a! and 4~b!.
Our estimate for the critical competition parameter at
transition line between the orderedF and paramagneticP
02611
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phases ispc50.981260.0001, while its value at the othe
transition line~AF-P transition line! is pc50.06560.001.

From the Monte Carlo simulations, we can also evalu
the critical exponents of the model. For instance, the ex
nent n that is associated with the correlation length can
obtained from Eq.~19!. We see that, at the critical compet
tion parameterpc ,UL8(pc) scales asL1/n. Then, from the
log-log plot ofUL8(pc) versusL @see Fig. 5~a!#, the best fit to
the Monte Carlo data gives usn51.0160.06, while in Fig.
5~b!, the best fit gives usn51.0960.05. Figure 6 shows the
log-log plots ofmF andmAF as functions ofL at the corre-
sponding critical points. The best fit to the data points of F
6~a! furnishes the valueb/n50.12560.009 for theF-P
FIG. 5. Plot ofUL8(pc) versusL. The straight lines are the best fits to the data points.~a! At the transition lineP-F, for T51.5, we
obtainedn51.0160.06. ~b! At the transition line AF-P, for T52.0, we obtainedn51.0960.05.
1-5
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FIG. 6. Plot ofmL(pc) versusL. The straight lines are the best fits to the data points.~a! At the transition lineP-F, for T51.5, we found
b/n50.12560.009.~b! At the transition line AF-P, for T52.0, we foundb/n50.1360.01.
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transition, while we get the valueb/n50.1360.01 for the
AF-P transition. Another critical exponent of interest is th
associated with the susceptibility. From the log-log plots
xF andxAF at their respective critical points we can find th
exponent ratiog/n. Figure 7~a! gives g/n51.6760.08 for
the F-P transition, and Fig. 7~b! givesg/n51.6360.04 for
the AF-P transition.

More precise values of the critical exponents can be fo
by collapsing the data points. For instance, we exhibit
Figs. 8 and 9 the data collapse for the order parametersmF

and mAF and for the susceptibilitiesxF and xAF, respec-
tively. The data points for all the lattice sizes considered
located on two different branches: one fore.0 and the other
for e,0, wheree5(p2pc)/pc . At the F-P transition line,
02611
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the paramagnetic phase is given bye,0, while at the AF-P
transition line,e.0 characterizes the paramagnetic pha
From the slopes of these curves for large values of the
rametereL1/n we can determine the exponentsb andg. On
the other hand, from the other branches, which are relate
the ordered phases, the slopes of the curves for large va
of eL1/n give b2n ~Fig. 8! and g ~Fig. 9!. The optimal
values we have found for the critical exponents employ
this procedure are as follows. At theF-P transition linen
51.0260.02, b50.12360.002, andg51.7360.02 and at
the AF-P transition linen51.0260.02, b50.12360.003,
andg51.7360.03. We repeated the whole process outlin
above for other points along the critical lines. We summar
these results in Fig. 10, where we plotted the exponentsn, b,
FIG. 7. Plot ofxL(pc) versusL. The straight lines are the best fits to the data points.~a! At the transition lineP-F, for T51.5, we found
g/n51.6760.08. ~b! At the transition line AF-P, for T52.0, we foundg/n51.6360.04.
1-6
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FIG. 8. Finite-size scaling~full data collapse! for the magnetizationmL , and for different values ofL as indicated in the figures. Th
parametere is defined bye5(p2pc)/pc . The straight lines represent the asymptotic behavior of the scaling functions.~a! At the transition
line P-F, for T51.5, the optimal values arepc50.981260.0001,n51.0260.02, andb50.12360.002.~b! At the transition line AF-P, for
T52.0, the optimal values arepc50.06560.001,n51.0260.02, andb50.12360.003.
,
n
th
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re
th

ium

g-
ag-
g-
and g versus the competition parameterp. The left part of
this figure accounts for the AF-P transition line, while the
right part is related to theF-P transition line. As we can see
the values we have obtained for these critical expone
compare very well with the analogous static exponents of
equilibrium two-dimensional Ising model. The nonequili
rium mixed-spin Ising model that we have considered p
serves the up-down symmetry, and this fact puts it in
02611
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e

same universality class as the corresponding equilibr
Ising model@11#.

V. CONCLUSIONS

We have studied a nonequilibrium mixed-spin ferroma
netic Ising model on a bipartite square lattice. Spins of m
nitudes51/2 were put in one sublattice, while spins of ma
e
FIG. 9. Finite-size scaling~full data collapse! for the susceptibilityxL , and for different values ofL as indicated in the figures. Th
parametere is defined bye5(p2pc)/pc . The straight lines represent the asymptotic behavior of the scaling functions.~a! At the transition
line P-F, for T51.5, the optimal values arepc50.981260.0001,n51.0260.02, andg51.7360.02. ~b! At the transition line AF-P, for
T52.0, the optimal values arepc50.06560.001,n51.0260.02, andg51.7360.03.
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nitudeS51 were located in the other sublattice. The syst
was in contact with a heat bath at fixed temperature and
the same time, subjected to an external flux of energy.
contact with the heat bath was simulated by the one-spin

FIG. 10. Static critical exponentsn, b, andg as functions of the
competition parameterp. The left part of the figure accounts for th
AF-P transition line, while its right part is related to theF-P tran-
sition line.
s
e,

e,

a
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Glauber process with probabilityp, while the flux of energy
was simulated by a process involving a simultaneous flipp
of a pair of nearest neighbor spins, with probability (
2p). Through Monte Carlo simulations and finite-size sc
ing arguments we determined the phase diagram of
model in the plane of the temperature of the heat bath ve
the competition parameterp. We showed that the phase dia
gram contains three phases separated by two continu
transition lines. When the flux of energy is very small t
system is ordered with the spins of both sublattices in
same direction, while for large values of the flux of ener
the system is also ordered but with the spins of sublatti
pointing in opposite directions. For almost all values ofp the
phase diagram exhibits a well defined paramagnetic ph
where the sublattice magnetizations vanish. We also ca
lated the critical exponentsn, b, andg along these two criti-
cal lines, and showed that this nonequilibrium model is in
same universality class as the equilibrium Ising model in t
dimensions.
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